Skip to content

Molecular Dynamics#

The femto.md module exposes a number of utilities for setting up and running MD simulations. These include solvating the system, applying hydrogen mass repartitioning (HMR), preparing a system for REST2 sampling, and running Hamiltonian replica exchange MD (HREMD) sampling across multiple processes.

Preparing a System#

Most utilities within the framework in general expected an OpenMM System object and a mdtop.Topology. While these can be loaded and generated from a variety of sources, the framework provides built-in utilities for loading ligands from MOL2 and SDF files and 'receptors' (e.g. proteins with crystallographic waters) from PDB, MOL2 and SDF files.

Single ligands can be easily loaded using femto.md.prepare.load_ligand

import pathlib

import femto.md.constants
import femto.md.prepare

eralpha_dir = pathlib.Path("eralpha")

ligand = femto.md.prepare.load_ligand(
    eralpha_dir / "forcefield/2d/vacuum.mol2",
    residue_name=femto.md.constants.LIGAND_1_RESIDUE_NAME
)

while two ligands (e.g. for use in an RBFE calculation) can be loaded using femto.md.prepare.load_ligands

ligand_1, ligand_2 = femto.md.prepare.load_ligands(
    eralpha_dir / "forcefield/2d/vacuum.mol2",
    eralpha_dir / "forcefield/2e/vacuum.mol2",
)

in the latter case the ligands will have their residue names overwritten to femto.md.constants.LIGAND_1_RESIDUE_NAME and femto.md.constants.LIGAND_2_RESIDUE_NAME respectively.

No modifications will be made to the ligands, so they should already be in the correct protonation state and tautomeric form of interest.

The 'receptor' (possibly also including any crystal waters and ions) can be loaded using femto.md.prepare.load_receptor:

temoa_dir = pathlib.Path("temoa")

receptor = femto.md.prepare.load_receptor(temoa_dir / "host.mol2")

Prepare the System#

Once the ligand and / or receptor have been loaded, they can be solvated and parameterized using femto.md.prepare.prepare_system. This step also includes neutralizing the system with counter ions, as well as optionally adding a salt concentration.

import openmm.unit

import femto.md.config
import femto.md.prepare

prep_config = femto.md.config.Prepare(
    ionic_strength=0.15 * openmm.unit.molar,
    neutralize=True,
    cation="Na+",
    anion="Cl-",
    water_model="tip3p",
    box_padding=10.0 * openmm.unit.angstrom,
)

topology, system = femto.md.prepare.prepare_system(
    receptor=receptor,  # or None if no receptor
    ligand_1=ligand_1,
    ligand_2=None,      # or `ligand_2` if setting up FEP for example
    config=prep_config,
)

By default, an OpenFF force field will be used to parameterize the ligands / any cofactors. The exact force field can be specified in the femto.md.config.Prepare configuration.

If the ligands / receptor has already been parameterized, the OpenMM FFXML or AMBER prmtop files can additionally be specified:

extra_params = [
    eralpha_dir / "forcefield/2d/vacuum.parm7",
    eralpha_dir / "forcefield/2e/vacuum.parm7",
]

topology, system = femto.md.prepare.prepare_system(
    receptor=receptor,  # or None if no receptor
    ligand_1=ligand_1,
    ligand_2=None,      # or `ligand_2` if setting up FEP for example
    config=prep_config,
    extra_params=extra_params
)

HMR and REST2#

HMR can be applied to the system using femto.md.prepare.apply_hmr:

femto.md.prepare.apply_hmr(system, topology)

This modifies the system in-place.

Similarly, the system can be prepared for REST2 sampling using femto.md.rest.apply_rest:

import femto.md.rest

rest_config = femto.md.config.REST(scale_torsions=True, scale_nonbonded=True)

solute_idxs = topology.select(f"resn {femto.md.constants.LIGAND_1_RESIDUE_NAME}")
femto.md.rest.apply_rest(system, solute_idxs, rest_config)

Currently only the torsions and non-bonded interactions (electrostatic and vdW) can be scaled, but this may be extended in the future. Again, this modifies the system in-place.

Warning

Any alchemical modifications to the system (e.g. using femto.fe.fep.apply_fep) should be applied before trying to apply REST2.

REST2 is implemented by introducing global context parameters that represent \(\frac{\beta_m}{\beta_0}\) and \(\sqrt{\frac{\beta_m}{\beta_0}}\) which can easily be set and modified on an OpenMM Context.

Tip

See femto.md.rest.REST_CTX_PARAM and femto.md.rest.REST_CTX_PARAM_SQRT for the names of these parameters, and later on in this guide for convenience functions for setting and modifying them.

Saving the System#

The prepared inputs are most easily stored as a coordinate file and an OpenMM XML system file:

import openmm

topology.to_file("system.pdb")
pathlib.Path("system.xml").write_text(openmm.XmlSerializer.serialize(system))

Running MD#

The femto.md.simulate modules provide convenience functions for simulating prepared systems. This includes chaining together multiple 'stages' such as minimization, annealing, and molecular dynamics.

The simulation protocol is defined as a list of 'stage' configurations:

import openmm.unit

import femto.md.simulate

kcal_per_mol = openmm.unit.kilocalorie_per_mole
angstrom = openmm.unit.angstrom

temperature = 300.0 * openmm.unit.kelvin

ligand_mask = f"resn {femto.md.constants.LIGAND_1_RESIDUE_NAME}"

restraints = {
    # each key should be an PyMol like selection mask that defines which
    # atoms in the system should be restrained. See the MDTop docs for details
    ligand_mask: femto.md.config.FlatBottomRestraint(
        k=25.0 * kcal_per_mol / angstrom**2, radius=1.5 * angstrom
    ),
    "protein and name CA": femto.md.config.FlatBottomRestraint(
        k=50.0 * kcal_per_mol / angstrom**2, radius=1.5 * angstrom
    )
}

stages = [
    femto.md.config.Minimization(restraints=restraints),
    femto.md.config.Anneal(
        integrator=femto.md.config.LangevinIntegrator(
            timestep=1.0 * openmm.unit.femtosecond,
        ),
        restraints=restraints,
        temperature_initial=50.0 * openmm.unit.kelvin,
        temperature_final=temperature,
        n_steps=50000,
        # the frequency, in number of steps, with which to increase
        # the temperature
        frequency=100,
    ),
    femto.md.config.Simulation(
        integrator=femto.md.config.LangevinIntegrator(
            timestep=1.0 * openmm.unit.femtosecond,
        ),
        restraints=restraints,
        temperature=temperature,
        pressure=None,
        n_steps=50000,
    ),
    femto.md.config.Simulation(
        integrator=femto.md.config.LangevinIntegrator(
            timestep=4.0 * openmm.unit.femtosecond,
        ),
        temperature=temperature,
        pressure=1.0 * openmm.unit.bar,
        n_steps=150000,
    )
]

The restraints dictionary is optional, but can be used to place position restraints on atoms during the equilibration stages. The reference positions for the restraints are taken as the output from the previous stage, or the inital positions if it is the first stage.

Tip

See MDTop documentation for a fuller guide on the atom selection syntax which extends beyond PyMol.

The femto.md.simulate.simulate_state function can then be used to run each stage sequentially:

import femto.md.simulate

state = {femto.md.rest.REST_CTX_PARAM: 1.0}

final_coords = femto.md.simulate.simulate_state(
    system, topology, state, stages, femto.md.constants.OpenMMPlatform.CUDA
)

The initial coordinates and box vectors are taken from the topology object.

The state dictionary is used to set OpenMM global context parameters. If your system does not use any global context parameters (e.g. it hasn't been prepared for REST2), or you're happy to use the defaults that were set, then you can simply pass an empty dictionary.

Note

By default the REST context parameters are set to 1.0, i.e., there is no scaling, but we set it explicitly here as an example.

You may notice here that we have only set \(\frac{\beta_m}{\beta_0}\) and not \(\sqrt{\frac{\beta_m}{\beta_0}}\) even though both are 'required'. The simulate_state will automatically set \(\sqrt{\frac{\beta_m}{\beta_0}}\) based on the value of \(\frac{\beta_m}{\beta_0}\). See femto.md.utils.openmm.evaluate_ctx_parameters for more details.

Running HREMD#

Hamiltonian replica exchange MD (HREMD) can be run using the femto.md.hremd module. It expects a system that has been prepared to expose global context parameters. These commonly include parameters for alchemically scaling the vdW and electrostatic interactions, as well as parameters for REST2 sampling.

Each individual 'replica' (i.e. a simulation run at a given state as defined by a set of global context parameters) can either be run in a single process, or in parallel across multiple processes using MPI. In the case of the former, each state is run sequentially prior to proposing swaps, while in the latter case states are run in parallel.

Note

When running in parallel, the number of processes does not need to match the number of states. In this case, each process will be assigned a subset of states to run sequentially.

Running in a Single Process#

The femto.md.hremd.run_hremd function can be used directly as part of another script if running HREMD in a single process:

import pathlib

import openmm.unit

import femto.md.config
import femto.md.constants
import femto.md.hremd
import femto.md.utils.openmm
import femto.md.rest

output_dir = pathlib.Path("hremd-outputs")

# define the REST2 temperatures to sample at
rest_temperatures = [300.0, 310.0, 320.0] * openmm.unit.kelvin
rest_betas = [
    1.0 / (openmm.unit.MOLAR_GAS_CONSTANT_R * rest_temperature)
    for rest_temperature in rest_temperatures
]

states = [
    {femto.md.rest.REST_CTX_PARAM: rest_beta / rest_betas[0]}
    for rest_beta in rest_betas
]
# REST requires both beta_m / beta_0 and sqrt(beta_m / beta_0) to be defined
# we can use a helper to compute the later from the former for each state
states = [
    femto.md.utils.openmm.evaluate_ctx_parameters(state, system)
    for state in states
]

# create the OpenMM simulation object
intergrator_config = femto.md.config.LangevinIntegrator(
    timestep=2.0 * openmm.unit.femtosecond,
)
integrator = femto.md.utils.openmm.create_integrator(
    intergrator_config, rest_temperatures[0]
)

simulation = femto.md.utils.openmm.create_simulation(
    system,
    topology,
    final_coords,  # or None to use the coordinates / box in topology
    integrator=integrator,
    state=states[0],
    platform=femto.md.constants.OpenMMPlatform.CUDA,
)

# define how the HREMD should be run
hremd_config = femto.md.config.HREMD(
    # the number of steps to run each replica for before starting to
    # propose swaps
    n_warmup_steps=150000,
    # the number of steps to run before proposing swaps
    n_steps_per_cycle=500,
    # the number of 'swaps' to propose - the total simulation length
    # will be n_warmup_steps + n_steps * n_cycles
    n_cycles=2000,
    # the frequency with which to store trajectories of each replica.
    # set to None to not store trajectories
    trajectory_interval=10  # store every 10 * 500 steps.
)
femto.md.hremd.run_hremd(
    simulation,
    states,
    hremd_config,
    # the directory to store sampled reduced potentials and trajectories to
    output_dir=output_dir
)

If successful, you should see a hremd-outputs/samples.arrow file being written to and a hremd-outputs/trajectories directory being created. The former contains the reduced potentials for each replica at each cycle, as well as statistics such as the number of swaps proposed and accepted.

import pyarrow

with pyarrow.OSFile("hremd-outputs/samples.arrow", "rb") as file:
    with pyarrow.RecordBatchStreamReader(file) as reader:
        output_table = reader.read_all()

print("HREMD Schema:", output_table.schema, flush=True)
print("HREMD Data:", flush=True)

print(output_table.to_pandas().head(), flush=True)
Tip

See also the femto.fe.ddg.load_u_kn utility for extracting decorrelated reduced potentials in a form that can be used with pymbar

Running in Parallel#

The above snipped for running HREMD in a single process can be easily modified to run in parallel across multiple processes using MPI. The main difference is that

  1. the snippet should be saved as a standalone script
  2. the following should (optionally) be added to the beginning of the script:
import femto.md.utils.mpi

femto.md.utils.mpi.divide_gpus()

This optional extra will attempt to crudely set the visible CUDA devices based on the current MPI rank. The script can then be run using mpirun (or srun etc.) as normal.