Free Energy#
femto
provides a simple interface for estimating relative and absolute binding free energies using different methods
(currently ATM and SepTop). If offers a full Python API as well as a convenient command-line interface.
Preparing the Inputs#
In general, the same set of inputs can be used for all-methods supported by this framework; these include pre-parameterized and docked ligands, and pre-prepared protein structures.
The easiest way to prepare the inputs for femto
, especially when using the CLI, is to structure them in the
'standard directory structure' expected by the framework:
.
├─ forcefield/
│ ├─ <ligand 1>/
│ │ ├─ vacuum.mol2
│ │ └─ vacuum.xml
│ └─ ...
├─ proteins/
│ └─ <target>/
│ └─ protein.pdb
├─ config.yaml
└─ edges.yaml
In particular, it should contain:
Contents | |
---|---|
forcefield | A subdirectory for each ligand of interest, which must include:
|
proteins | A single subdirectory named after the protein target, which must include:
|
config.yaml (optional) | A YAML file containing configuration settings, such as the equilibration protocol, lambda states, and HREMD settings. |
edges.yaml or Morph.in | These files define the edges (ligand pairs) for which you want to compute the binding free energies.
|
Tip
See the examples
directory for examples of this structure.
Most methods define a default configuration that will be used if one isn't specified. These can be accessed using the
config
command:
Running the Calculations#
If running on a SLURM cluster (recommended), femto
provides helpers for running all edges in parallel. Otherwise,
you can run each edge individually.
All Edges#
If running on a SLURM cluster, all the edges can be run using the femto <method> submit-workflows
or
femto <method> submit-replicas
commands:
femto atm --config "eralpha/config-atm.yaml" \
\
submit-replicas --slurm-nodes 2 \
--slurm-tasks 8 \
--slurm-gpus-per-task 1 \
--slurm-cpus-per-task 4 \
--slurm-partition "project-gpu" \
--slurm-walltime "48:00:00" \
\
--root-dir "eralpha" \
--output-dir "eralpha/outputs-atm" \
--edges "eralpha/edges-atm.yaml" \
--n-replicas 5
femto septop --config "eralpha/config-septop.yaml" \
\
submit-replicas --slurm-nodes 5 \
--slurm-tasks 19 \
--slurm-gpus-per-task 1 \
--slurm-cpus-per-task 4 \
--slurm-partition "project-gpu" \
--slurm-walltime "48:00:00" \
\
--root-dir "eralpha" \
--output-dir "eralpha/outputs-septop" \
--edges "eralpha/edges-septop.yaml" \
--n-replicas 5
Tip
The examples
directory also contains configuration files
for enabling REST2 (config-<method>-rest.yaml
).
The ERα ATM example uses 22 lambda windows (as defined in "eralpha/config-atm.yaml"
). We have only requested a total
of 8 GPUs here, however. femto
will split the lambda windows across the available GPUs, and simulate each in turn
until all windows have been simulated. In principle then the calculation can be run using anywhere between 1 and
n_lambda
GPUs.
Note
If more GPUs are requested than there are lambda windows, the extra GPUs will remain idle.
As calculations finish successfully, the estimated free energies will be written to the output directory as a CSV file
(eralpha/outputs-<method>/ddg.csv
). If the analysis_interval
is set in the sample
section of the config, you
should also see TensorBoard run files being created in the output directory. These can be used to monitor the progress
of the simulations, especially online estimates of the free energies.
Single Edges#
If you want to run a specific edge rather than submitting all edges defined in "eralpha/edges-<method>.yaml"
, you can
instead run:
srun --mpi=pmix -n <N_COMLEX_LAMBDAS> \
\
femto septop --config "eralpha/config-septop.yaml" \
\
run-complex --ligand-1 "2d" \
--ligand-2 "2e" \
--root-dir "eralpha" \
--output-dir "eralpha/outputs-septop/complex" \
--edges "eralpha/edges-septop.yaml"
srun --mpi=pmix -n <N_SOLUTION_LAMBDAS> \
\
femto septop --config "eralpha/config-septop.yaml" \
\
run-solution --ligand-1 "2d" \
--ligand-2 "2e" \
--root-dir "eralpha" \
--output-dir "eralpha/outputs-septop/solution" \
--edges "eralpha/edges-septop.yaml"
femto septop --config "eralpha/config-septop.yaml" \
\
analyze --complex-system eralpha/outputs-septop/complex/_setup/system.xml \
--complex-samples eralpha/outputs-septop/complex/_sample/samples.arrow \
--solution-system eralpha/outputs-septop/solution/_setup/system.xml \
--solution-samples eralpha/outputs-septop/solution/_sample/samples.arrow \
--output eralpha/outputs-septop/ddg.csv
or using mpirun
if not running using SLURM.
Note
By default femto
will try and assign each process on a node to a different GPU based on the local rank and
CUDA_VISIBLE_DEVICES
, i.e. gpu_device = local_rank % len(CUDA_VISIBLE_DEVICES)
. Depending on your setup, you
may need to create a hostfile to ensure the correct GPUs are used.
Here we have still specified the path to the edges file
(edges-atm.yaml
) even though we are running a specific edge. This is optional, but will ensure femto
uses the
reference atoms defined within rather than trying to automatically select them.
The --report-dir
option can be used to optionally specify a directory to write tensorboard run files to. This can be
useful for monitoring the progress of the simulations, especially online estimates of the free energies.